The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3

نویسندگان

  • John W. Moreau
  • Caitlin M. Gionfriddo
  • David P. Krabbenhoft
  • Jacob M. Ogorek
  • John F. DeWild
  • George R. Aiken
  • Eric E. Roden
چکیده

Methylation of tracer and ambient mercury ((200)Hg and (202)Hg, respectively) equilibrated with four different natural organic matter (NOM) isolates was investigated in vivo using the Hg-methylating sulfate-reducing bacterium Desulfobulbus propionicus 1pr3. Desulfobulbus cultures grown fermentatively with environmentally representative concentrations of dissolved NOM isolates, Hg[II], and HS(-) were assayed for absolute methylmercury (MeHg) concentration and conversion of Hg(II) to MeHg relative to total unfiltered Hg(II). Results showed the (200)Hg tracer was methylated more efficiently in the presence of hydrophobic NOM isolates than in the presence of transphilic NOM, or in the absence of NOM. Different NOM isolates were associated with variable methylation efficiencies for either the (202)Hg tracer or ambient (200)Hg. One hydrophobic NOM, F1 HpoA derived from dissolved organic matter from the Florida Everglades, was equilibrated for different times with Hg tracer, which resulted in different methylation rates. A 5 day equilibration with F1 HpoA resulted in more MeHg production than either the 4 h or 30 day equilibration periods, suggesting a time dependence for NOM-enhanced Hg bioavailability for methylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3).

To help understand the mechanism and control of Hg uptake in Hg-methylating bacteria, we investigated the effect of sulfide on Hg methylation by pure cultures of the sulfate-reducing bacterium Desulfobulbus propionicus (1pr3). Our previous research in natural sediments has suggested that Hg methylation occurs most rapidly when sulfide concentrations favor formation of neutral dissolved Hg-S spe...

متن کامل

The Influence of Sulfide on Solid-Phase Mercury Bioavailability for Methylation by Pure Cultures of Desulfobulbus propionicus (1pr3)

To help understand the mechanism and control of Hg uptake in Hg-methylating bacteria, we investigated the effect of sulfide on Hg methylation by pure cultures of the sulfatereducing bacterium Desulfobulbus propionicus (1pr3). Our previous research in natural sediments has suggested that Hg methylation occurs most rapidly when sulfide concentrations favor formation of neutral dissolved Hg-S spec...

متن کامل

Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3).

We have previously hypothesized that sulfide inhibits Hg methylation by decreasing its bioavailability to sulfate-reducing bacteria (SRB), the important methylators of Hg in natural sediments. With a view to designing a bioassay to test this hypothesis, we investigated a number of aspects of Hg methylation by the SRB Desulfobulbus propionicus, including (i) the relationship between cell density...

متن کامل

Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium.

Methylmercury has been thought to be produced predominantly by sulfate-reducing bacteria in anoxic sediments. Here we show that in circumneutral pH sediments (Clear Lake, CA) application of a specific inhibitor of sulfate-reducing bacteria at appropriate concentrations typically inhibited less than one-half of all anaerobic methylation of added divalent mercury. This suggests that one or more a...

متن کامل

Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments.

Differences in methylmercury (CH(3)Hg) production normalized to the sulfate reduction rate (SRR) in various species of sulfate-reducing bacteria (SRB) were quantified in pure cultures and in marine sediment slurries in order to determine if SRB strains which differ phylogenetically methylate mercury (Hg) at similar rates. Cultures representing five genera of the SRB (Desulfovibrio desulfuricans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015